

Project Final Report

CUDA Ray Tracer

Submitted for the BSc in

Computer Science with Games Development

May 2014

by

Alexander Paul Rodgers

Table of Contents

1 Introduction .. 5

1.1 Initial Brief ... 5

1.2 Context ... 5

1.2.1 Ray Tracing ... 5

1.2.2 General Computation on Video Cards ... 6

1.3 Aim and Objectives ... 6

2 Background Overview .. 7

2.1 Rendering Techniques Comparison .. 7

2.1.1 Pipelined-based Polygon Rendering .. 7

2.1.2 Ray Traced Rendering ... 8

2.2 Ray Tracing Algorithm .. 9

2.3 Aliasing Problem ... 10

2.3.1 Staircasing ... 10

2.3.2 Interference ... 11

2.3.3 Supersampling Anti-aliasing ... 11

2.4 Phong Local Illumination Model .. 12

2.5 Ray Tracing GPGPU Suitability... 13

2.6 CUDA GPGPU .. 13

2.6.1 Compute Capability.. 14

2.6.2 CUDA Overview ... 14

2.6.3 GPU Memory Hierarchy ... 15

3 Ray Tracing Principles ... 16

3.1.1 Defining a Ray ... 16

3.1.2 The Camera ... 16

3.1.3 The Image Plane ... 17

3.1.4 Ray - Plane Intersections: .. 17

3.1.5 Ray - Sphere Intersections: .. 18

3.1.6 Reflection Rays: ... 19

3.1.7 Refraction Rays ... 19

4 Geometric Modeling Techniques: ... 20

4.1 Polygonal Mesh .. 20

4.2 Meshless Implicit Modeling ... 23

4.2.1 Implicit Functions ... 23

4.2.2 Signed Distance Functions (SDF) .. 24

4.2.3 Ray Marching with Distance Functions .. 24

4.2.4 Normal Calculation... 26

4.2.5 Soft Shadows... 27

4.2.6 Transformations ... 28

4.2.7 Combining Distance Fields .. 29

5 CUDA Principles .. 32

5.1 Kernels ... 32

5.2 Device Functions .. 33

5.3 CUDA Thread Mapping ... 33

5.3.1 Thread Block and Grid Dimensions .. 34

5.3.2 Device Memory Allocation and Retrieval .. 35

5.4 CUDA Structure and File Compilation ... 36

5.4.1 File Compilation ... 36

5.4.2 CUDA Project Structure Example .. 37

6 Technical Implementation .. 38

6.1 Development Environment ... 38

6.1.1 GLM 0.9.4.4 - Open GL Mathematics .. 38

6.1.2 CUDA Software Development Toolkit 5.5 .. 38

6.2 Hardware Environment ... 39

6.3 Prototypes Overview ... 39

6.3.1 A note on terminology .. 39

6.3.2 Ray Tracing Prototypes ... 39

6.3.3 Ray Tracing Prototype Features (CPU and CUDA) .. 40

6.3.4 CPU Ray Tracer - Prototype 1 ... 41

6.3.5 CUDA Migration Considerations .. 43

6.3.6 CUDA Ray Tracer - Prototype 2 ... 45

6.3.7 Ray Marching Prototype Features (CPU and CUDA) 46

6.3.8 CPU Ray Marcher - Prototype 3... 48

6.3.9 CUDA Ray Marcher - Prototype 4 .. 49

6.4 Prototype Rendering Times .. 50

6.4.1 Ray tracer Prototype Render Times: .. 50

6.4.2 Ray Marcher Prototype Render Times: .. 50

6.5 Project Task List ... 51

6.6 Project Time Plan.. 51

6.7 Prototype Renderings ... 51

7 Critical Evaluation .. 52

7.1 Project Achievements and Analysis .. 52

7.1.1 Ray tracing Prototypes (1 & 2) Performance .. 52

7.1.2 Ray marching Prototypes (3 & 4) Performance .. 53

7.1.3 Results Conclusion .. 53

7.2 Further Development .. 54

7.2.1 CUDA Single Kernel Design .. 54

7.2.2 CUDA Prototype - Host and Device Synergy ... 54

7.2.3 Object Orientated Design ... 54

7.2.4 Real-time Rendering .. 54

7.3 Personal Reflection ... 55

8 References .. 56

9 Appendices .. 59

9.1 Appendix A - A Ray Tracing Analogy .. 59

9.2 Appendix B - The Cameras Facing Direction .. 59

9.3 Appendix C - Pixel Space Conversion... 59

9.4 Appendix D - Parallel Ray-Plane ... 59

9.5 Appendix E - Ray-Sphere Intersection Roots .. 59

9.6 Appendix F - Risk Analysis Table .. 60

9.7 Appendix G - Project Task List .. 60

9.8 Appendix H - Project Time Plan .. 62

9.9 Appendix I - Hardware Specifications.. 63

9.10 Appendix J - Prototype Performance Testing .. 63

9.11 Appendix K - Prototype Renderings .. 64

CUDA Ray Tracer

1 Introduction

1.1 Initial Brief

Ray tracing is a simple 3D graphics technique for generating high quality computer graphic

images. Many scenes in various animated films are created based on ray tracing techniques.

However, compared with pipelined-based graphics techniques, ray tracing is very

computationally expensive. The aim of this project is to explore the computing capability of

modern GPUs and write a ray tracer using a GPGPU technique, such as the NVIDIA CUDA

SDK.

1.2 Context

1.2.1 Ray Tracing

The technique has been in common use throughout the entertainment industry by
companies such as Pixar and Dreamworks, for use in realistic offline rendering in non-
interactive media such as movies (Pacheco, 2008). For real-time rendering however,
pipeline-based techniques are generally favored due to significant greater performance
(Etheredge & Meteer, 2010). Pipeline-based graphics are advancing quickly with the aid of
powerful native hardware support, yet ray tracing's simplicity and accurate simulation of
lighting physics can offer very realistic rendering without the need of additional complicated
algorithms.

Referred to as an "Image-space algorithm" (Suffern, 2007, p. ix), at its simplest, ray tracing

places a 2D image-plane of pixels between a virtual camera and 3D scene. The algorithm

functions by following a projected line or 'ray' from the camera through each pixel until it

intersects with an object. When the ray intersects, it calculates the colour based on the

objects material and the scenes lighting. See Appendix A for an extrapolated ray tracing

analogy.

Figure 1: Ray Tracing Scene

The ray tracing algorithm was first presented by Appel (1968). This early algorithm allowed

the shading of shapes that could be intersected with a ray, and is now specifically referred to

as 'ray casting'.

Whitted (1979) later developed a recursive ray tracing algorithm that traced additional

shadow, reflection and refraction rays at the point of intersection to create realistic lighting. It

is this technique that forms the basis of modern ray tracing today.

1.2.2 General Computation on Video Cards

Modern video card parallel processing capabilities have led to an increased use for non-

graphical processing over recent years, establishing the phrase 'General-Purpose

computation on Graphics Processing Units' or GPGPU. The modern video cards specialised

design is particularly efficient at parallel data calculations compared to a CPU. For this

reason, GPGPU is now a major contributor in supercomputing and an accelerator in the

innovation of many scientific fields (Trader, 2013).

Ray tracing is a natural candidate for GPGPU because of its high data throughput and

parallelism. A large potential volume of ray calculations makes it computationally very

expensive, therefore simultaneous processing using many smaller cores can provide

substantial performance benefits when used in highly parallel routines (Jeong & Abram,

n.d.).

1.3 Aim and Objectives

The benefits of this project will be firstly to analyse GPGPU ray tracing by comparing its

offline rendering performance to that of CPU ray tracing, and secondly explore the benefits

introduced via the implementation of ray marching techniques and implicit distance

functions.

Four prototypes will be developed for performance and visual analysis. The first two being

standard ray tracers, one utilising the CPU, the other using GPGPU techniques. The third

and fourth prototypes will explore ray tracing utilising ray marching and implicit distance

functions, as before with one utilising the CPU, the other with GPGPU computed rendering.

It will be written in a high performance language to optimise render times. It will be aimed at

programmers with related graphics and programming knowledge that can operate it without

a menu interface. Potential applications include the creation of artistic images and realistic

3D renderings.

2 Background Overview

2.1 Rendering Techniques Comparison

2.1.1 Pipelined-based Polygon Rendering

Pipelined-based rendering is the most popular technique used in 3D graphics today. The
pipeline describes the stages along which a 3D scene is transformed into a 2D rasterized
representation and then presented to the display. The pipeline is generally associated with
3D polygon rendering, a 'forward mapping' technique where an area in view is calculated
and rays are sent from the vertices of each surface into the camera. Each pixel keeps track
of the nearest primitive by storing a value in a 'z-buffer'. This entire process of converting a
3D scene into a 2D image is known as 'scan conversion' or 'rasterization'. Shading is then
calculated afterwards by interpolating illumination values between vertices and using the 'z-
buffer' for correct ordering. (Cutler, 2009)

The pipelined-based method is very fast and especially good at rendering dynamic scenes
due to an object-based approach. With interactive productions such as video games, a
single set of geometry data can be sent to the GPU and then rendered many times for each
object instance unlike in ray tracing where generally, an entire scene must be stored in-
memory and recalculated each frame (Stratton, 2008). Despite its performance benefits
however, pipelined methods have no inherent capabilities to handle shadows, reflections
and other visual effects that define very realistic renderings (Cutler, 2009). Instead, these
effects are faked using a range of less-accurate techniques such as reflection and shadow
mapping (Stratton, 2008).

Figure 2: Differing Mapping Techniques (Cutler, 2009)

2.1.2 Ray Traced Rendering

In contrast ray tracing is a pixel-based 'inverse mapping' algorithm developed to accurately
calculate the distribution of light throughout a scene. It allows 'physically based' rendering of
environments resulting in accurate hard shadows and reflections without the need to use
complex and inaccurate algorithms to fake their appearance (Howard, 2007). The simplicity
of the algorithm means that additional effects such as refraction, blurring and depth-of-field
can be later integrated into the base algorithm with little re-programming making it both
flexible and extensible. Acceleration structures can be integrated to partition up space,
greatly limiting the amount of calculations required in very complex scenes. Additionally all
calculations can be performed on a CPU meaning that unless specifically utilising GPGPU
capabilities as outlined in this report, a high-end GPU is not required to produce very realistic
offline renderings. (Stratton, 2008)

The biggest drawback of ray tracing is performance. Although pipelined and ray tracing
methods are both computationally expensive, GPU hardware has been tailor engineered
towards pipelined-based rendering for years, giving it a significant advantage. Physical
accuracy can also be seen as a redundant concept since with modern innovations, faking
realistic effects has led often to the human eye being unable to tell the difference between
an accurate ray traced scene and one mimicked using sophisticated pipelined algorithms
(Stratton, 2008). Other aspects that hinder ray tracing performance include it's anti-aliasing
capabilities which are detailed later in this section.

Figure 3: A Ray traced scene from the prototype.

2.2 Ray Tracing Algorithm

In Figure 4, a typical ray tracing algorithm with reflection and shadow secondary rays is
presented using pseudo code:

01 // for each pixel

02 // Calculate the direction between camera and pixel centre

03 // Fire a primary ray through the pixel

04 // Compute the nearest intersection point with an object (if any)

05 //

06 // if the ray hit an object

07 // {

08 // if the object material is reflective

09 // {

10 // compute a secondary 'reflection' ray

11 // if the reflection ray hit an object

12 // {

13 // recurse from line 08

14 // add object material colour to final color

15 // }

16 // }

17 //

18 // for each light source

19 // {

20 // compute a secondary 'shadow ray' towards light source

21 // if 'shadow ray' doesn't intersect

22 // compute final colour from light and object material

23 // }

24 //

25 // set pixel colour to final colour

26 // }

27 // else set pixel colour to background colour

Figure 4: Ray tracing pseudo-code

Ray tracing is traditionally an iterative process that occurs over each pixel within an image to
determine its final colour.

The first step in ray tracing requires determining the direction to fire an initial 'primary' ray
from the camera (eye) position through a pixel within the 2D image plane (See Figure 1).
Once the ray is fired, linear algebra determines the closest point of intersection with an
object, since objects occluded behind the closest will generally not be rendered, with
exception to refraction discussed later in section 3.1.7.

If the ray did not intersect any objects in the scene, the pixels colour is set to a background
value. If the ray did intersect an object, the appropriate colour must then be computed using
'secondary' rays.

Lighting largely determines the resultant colour of a pixel whether directly from a light source
or as reflected light from another object. Convincing reflections can be accurately created by
combining different object colours via sending additional rays between objects from each
intersection point. Therefore if the primary objects material is reflective, a secondary
'reflection' ray must be computed. This process can be repeated recursively until a specified
depth is reached. If the reflection ray hits an object, the secondary intersected object's
material colour contributes to the final pixel to simulate the reflective properties of light.
In a simple case with a single light source, a secondary 'shadow' ray is also computed and
sent from the primary intersection point to the light source; if this secondary ray intersects
another object then the pixel is said to be 'in shadow' and the light will not contribute to the

pixels final colour. If the 'shadow ray' does not intersect another object, then colour can be
calculated using an illumination model such as 'Phong', by scaling the material colour and
reflective properties by the diffuse, specular and ambient components of the light source. In
scenes with multiple lights, 'shadow rays' must be computed for each, all contributing to the
final pixel colour.

Once all pixel colours are determined and stored in a data structure, an image file can be
generated or the data sent to a graphical context.

2.3 Aliasing Problem

Ray tracing relies on a per-pixel sampling process where each pixel is a fixed size, yet the
rays that must compute the pixels each represent an infinitely thin point. This dilemma is
solved by tracing a ray through the centre of each pixel and setting the colour based on that
ray for the entire pixel. However, since each pixel in an image occurs at a regular interval,
but their colours are determined by a single sample, this leads to a visual effect known as
'aliasing' where artifacts not representative of the scene, manifest in the final rendering.
(Cooksey & Bourke, 1994)

Figure 5: The 'staircasing' aliasing effect. (Cooksey & Bourke, 1994)

2.3.1 Staircasing

'Staircasing' (Figure 5) is one such manifestation that generally occurs along stark changes
in intensity such as along shadows and edges. This results in a loss of image clarity and a
blocky 'stepping' apparition due to each pixel being either completely shaded or not,
depending on where the ray sample hits (Cooksey & Bourke, 1994)

Figure 6: Moiré interference
(no AA)

Figure 7: Moiré interference
(4x supersampling AA)

2.3.2 Interference

Interference patterns are another manifestation of aliasing as demonstrated in Figure 6, a
screenshot taken from the ray tracer prototype. Specifically referred to as Moiré interference
(Cooksey & Bourke, 1994), the distorted effect is especially noticeable at the top of the
example, caused by the undersampling of a checkered pattern at an increasingly fine
frequency. This undersampling is caused by the inaccuracies of the ray tracers single point
sampling method.

2.3.3 Supersampling Anti-aliasing

To rectify this problem there are various 'Anti-aliasing' techniques that can be applied to the
ray tracing algorithm. Figure 7 demonstrates a similar scene from the prototype but with an
implemented anti-aliasing technique called 'supersampling'.

Figure 8: Supersampling grid algorithm (Cooksey & Bourke, 1994)

Supersampling is a simple discrete anti-aliasing method that works by taking multiple sub-
samples from within a pixel and determining an averaged colour to apply to the entire pixel.
Each sub-sample requires an additional ray to be cast that can be simply implemented into
an existing ray tracer, yet does carry with it a large potential performance overhead by

increasing the number of ray computations per pixel by ὲ, with ὲ being the anti-aliasing

strength or the Ѝ of the total number of sub-samples per pixel e.g. '8x' anti-aliasing refers to

64 (ὲ) sub-samples per pixel.
To find the position of each sub-sample within a pixel, a variety of supersampling
configurations can be used. Figure 8 demonstrates a grid algorithm where each sub-sample
is evenly distributed throughout the pixel, other potential algorithms are shown in Figure 9.

Figure 9: Examples of Supersampling algorithms (Wikipedia, 2014)

Once each sub-sample position has been determined, a ray is fired through each and the
colour at the sample location is determined as previously described in section 2.2. An
average colour is then computed from all the sub-samples within the pixel and set as the
colour for the overall pixel. The higher the number of sub-samples taken, the more accurate

the sampling. It is important to note that although anti-aliasing techniques like supersampling
can greatly reduces aliasing, it cannot be eliminated entirely.

2.4 Phong Local Illumination Model

For this project, a local surface reflection model is implemented to provide realistic
illumination values for each surface point.

The Phong illumination model (also known as a reflection model) is a 'smooth shading'
technique particularly appropriate for ray tracing due to its per-pixel surface normal
calculations as opposed to Gouraud, an older less accurate per-vertex method. The Phong
model describes how surfaces reflect light comprised of a diffuse component for rough
Lambertian surfaces and a specular component for shiny surfaces. Additionally a third
ambient component is factored in to represent the background level of scattered light
present in a scene (Geigel, 2004).

Each surface point (Ὅ) illumination value can be calculated using the following Phong

equation (Phong, 1975):

Ὅ ὯὭ Ὧ ὒ ẗὔὭȟ Ὧ Ὑ ẗὠ Ὥȟ
 ɴ

Where ὯȟὯȟὯ are the ambient, diffuse and specular material constants respectively,
is the material 'shininess' constant applied to the specular component, ὰὭὫὬὸί is the set of all

light sources, ὒ is a surface vector towards each light source, ὔ is the surface normal,

Ὑ is the perfect reflection vector and ὠ is the surface vector towards the cameras view.

Finally ὭȟὭ are the diffuse/specular red, green and blue (RGB) intensities for each light.

Figure 10 demonstrates the individual components that make up the Phong illumination
model and the result of their combination.

Figure 10: Phong Illumination Model

By applying particular constant values to material components, different textured surfaces
can be simulated. Matt or rough materials can be simulated by increasing the size of
specular highlights via lowering the 'shininess' exponent value, and alternatively mirror-like
reflective materials can be simulated by increasing the exponent and therefore reducing the
size of the specular highlights. The Specular and diffuse reflection intensity constants can
also be individual adjusted to change how much light is reflected back.

2.5 Ray Tracing GPGPU Suitability

In a typical rendering with no spatial partitioning, a ray for each pixel in the image must be
computed and tested for intersection. At a modern high-definition resolution of 1920 by 1080
pixels, this equates to 2,073,600 primary rays. Additionally, with 64 sub-sample anti-aliasing
this increases yet to 132,710,400 primary rays. On top of this, there are secondary rays that
must then be computed at the very least doubling the figure to well over 265,420,800 ray
computations for a single frame. It is for this reason that ray tracing performance is a
challenging problem to overcome even on modern hardware.

Ray tracing, by the nature of its algorithm is often referred to as 'embarrassingly parallel'
(Hoberock, et al., n.d.) due to its suitability for parallel computation. As such, for this project
a GPGPU variant on the initial CPU prototype has been developed (See section 4.0) to
explore the performance benefits of utilising dedicated parallel processing hardware (GPU).

GPGPU ray tracing uses the same base algorithm but instead of iterating over each pixel
sequentially, the image is divided up into blocks, within which a separate thread executes on
each pixel concurrently. Ray tracing is a highly parallel algorithm because each of these
threads and/or blocks does not need to communicate with each other, therefore each thread
can be executed with independence and in any order, avoiding potential performance
overheads.

By implementing a CUDA-based GPGPU ray tracer, the vast quantity of the above ray
computations are broken into smaller segments and processed in parallel by more
numerous, less powerful streaming multi-processors (SM). Refer to section 7.1 for a
performance comparison between the CPU and GPGPU prototypes developed for this
project.

2.6 CUDA GPGPU

CUDA (Compute Unified Device Architecture) is a parallel computing and development
platform created by NVIDIA to increase parallel computing performance via the utilisation of
GPU hardware (Nvidia Corporation, 2014).

As described in section 2.5, GPUs are very efficient at processing large amounts of parallel
data. This is largely due to GPU hardware design, featuring a greater transistor count
dedicated to data processing rather than caching and flow control compared to that of a
CPU, as demonstrated in Figure 11.

Figure 11 : Transistors - GPU vs. CPU (Nvidia Corporation, 2013)

2.6.1 Compute Capability

The CUDA platform is compatible only with NVIDIA devices with each GPU generation
having a particular 'compute capability' offering various enhancements. Programs can be
compiled for compatibility with a particular compute version using the NVCC compiler that
accompanies the CUDA development toolkit. To date there have been three generations of
CUDA devices, versions 1.x(Tesla-class), 2.x(Fermi-class) and 3.x(Kepler-class) (Wilt,
2012). Currently, the latest hardware compute version is Kepler-class 3.5. See section 6 for
details on the CUDA capabilities of the hardware used in this project.

2.6.2 CUDA Overview

The CUDA API has three core abstractions: thread groups, shared memories and barrier

synchronization, accessible as a set of language instructions. Programs are executed for

many data elements in parallel. In 3D rendering, large sets of vertices, pixels and image

blocks can be mapped to parallel threads. 'Kernels' are computational routines, created by

the programmer to be executed in parallel by numerous different threads. Each thread

executing a kernel acquires a 'thread ID'. These ID's are in a 3-component vector so that

they can be assigned to 1D, 2D or 3D thread groups called 'blocks' (Nvidia Corporation,

2013), see Figure 12.

Figure 12: Thread Blocks (Nvidia Corporation, 2013)

Blocks are required to execute independently and rely on being able to run in any order,

sequentially or parallel. Threads within blocks can share data using shared memory and

cooperate via thread synchronisation, acting as a barrier where a block must wait until it can

proceed. (Nvidia Corporation, 2013)

Streaming Multiprocessors (SM's) are the units responsible for executing kernels. Each SM

features thousands of registers and a variety of caches (see section 2.6.3). SM's process in

units of 32 threads known as 'Warps'. Warp schedulers can change contexts quickly

between threads, issuing new instructions to warps waiting for execution. In addition, each

SM contains many execution cores responsible for performing integer and floating-point

operations (Wilt, 2012).

Today, high-end hardware can utilise 8 SM's, each with 192 cores (Hagedorn, 2013),

granting a total of 8x192 cores, dramatically higher than that of a typical CPU. Each of these

cores can execute via 'Single Instruction, Multiple Thread' or SIMT developed by NVIDIA, a

vector processing-based execution model similar to SIMD (Single Instruction Multiple Data)

but with added functionality for conditional branching, where cores belonging to the same

group perform the same instruction using multiple threads (Wolfe, 2010).

2.6.3 GPU Memory Hierarchy

Memory management is an important aspect of CUDA programming due to performance
between the various memory caches. Therefore, managing where data is being accessed
from has a significant effect on performance.

It is optimal to reduce the amount of data transfer occurring between the CPU(host) and
GPU(device), and further to use cached memory where possible over device memory
(Barros, 2009).

Figure 13: Multiprocessor Architecture (Nvidia Corporation, 2013)

The following is a summary of the main memory types available on the GPU (Zahran, 2012):

¶ 'Register' memory is the fastest available but is limited in size and availability. It is

bound to a single threads lifetime.

¶ 'Shared' memory is extremely fast and highly parallel due to being accessible by

every thread in a block, for the duration of that blocks lifetime.

¶ 'Global' device memory is usually implemented as DRAM and has high latency and

limited bandwidth making it far slower than other memory types. It is however the

largest source of memory on the GPU and is accessible from any thread or block

with access to a pointer to associated data. Data from the CPU host is generally first

allocated and copied to global device memory prior to computation by a kernel.

¶ 'Constant' memory is a read-only cache of global memory and as a result has shorter

latency and higher bandwidth.

3 Ray Tracing Principles

To implement a ray tracer there are several key components required, consisting of rays, a

camera , an image-plane and shapes to represent a scene such as spheres and a plane.

3.1.1 Defining a Ray

Within the context of ray tracing, a ray is an infinite straight line defined by the following

parametric equation:

▬ ▫ ὸ╓

where ▬ is an arbitrary point along the line, ▫ is the lines origin, ╓ is a direction vector and ὸ

is a coefficient of ╓ determining distance. Because the line is infinite, ὸ describes where

relative to the origin a position on the line is. Therefore ὸ at the ray origin and

 ὸ πȟὸ π, for an arbitrary point along the line.

3.1.2 The Camera

The camera's local coordinate system is established as an orthonormal basis by calculating

three perpendicular unit vectors (◊ȟ○ȟ◌ in world space to represent its axis.

Assuming the camera looks down the negative z-axis, ◌ represents its facing direction (See

Appendix B for details). ◊ can be calculated as the camera 'right' direction via ◌ ◐ with ◐

defined as an 'up' direction representing the worlds y-axis. Finally ○ is calculated as the

camera 'up' direction via ◌ ◊.

Figure 14: Orthonormal basis (Suffern, 2007, p. 41)

3.1.3 The Image Plane

Using the following technique (Scratchapixel, 2012), Image plane pixels coordinates are

mapped to the camera's field of view(FOV) and finally into world space to calculate each

ray's direction (See Appendix C for details).

An initial pixels raster coordinates are first converted into 2D normalized device

coordinates(NDC) where pixel point ὥὼȟώ and π ὼ ρȟπ ώ ρ:

ὥ
ὼ πȢυ

ὍάὥὫὩὡὭὨὸὬ
ȟ
ώ πȢυ

ὍάὥὫὩὌὩὭὫὬὸ

Since the image plane will be centred to the camera, it reasons that the cameras axis be

aligned along the image plane centre where pixel ὦὼȟώ and ρ ὼ ρȟ ρ ώ ρ :

ὦ ςὥ ρȟρ ςὥ

ὦ can then be converted to camera coordinate space:

ὧ ὦὸὥὲ
Ὢέὺ

ς
ὃ

ὧ ὦὸὥὲ
Ὢέὺ

ς

where Ὢέὺ is a FOV angle and ᴂὃᴂ is the image aspect ratio. This scales the pixels

normalised coordinates based on distance from the FOV's centre. ᴂὃᴂ adjusts ὧ for non-

square images.

Finally it is converted to world space by scaling ὧ along the camera's orthonormal basis

where the pixel's ray direction Ὀ can be calculated:

╓ ◌ ὧ◊ ὧ○

3.1.4 Ray - Plane Intersections:

A plane can be defined using the implicit equation:

▬ẗ▪ ▀

where ▬ is an arbitrary position on the plane, ▪ is the normal determining the planes

orientation and ▀ is the distance from origin.

If the ray is not parallel (see Appendix D for details), an intersection must occur and so must

determine its distance along the ray. The following technique (Suffern, 2007) can be used to

determine this distance:

Taking the equations for both a ray and plane, the ray equation can be substituted into the

plane equation for ▬:

▫ ὸ╓ ẗ▪ ▀

Solving for ὸ finds the distance along a ray from its origin that an intersection has occurred

with a plane:

ὸ
▀ ▫ẗ▪

╓ẗ▪

It is then known that if ὸ π the intersection has occurred within the scene and also its

distance from the rays origin.

3.1.5 Ray - Sphere Intersections:

A sphere can be defined using the implicit equation:

▬ ╬ẗ▬ ╬ ὶ π

where ▬ is a point on the surface of the sphere, ╬ is the centre of the sphere and ὶ is the

radius.

The following technique (Olano, 2002) describes calculating the value of ὸ upon intersection

with a sphere.

Substituting the ray equation into the sphere equation for ▬ looks as follows:

▫ ὸ▀ ╬ẗ▫ ὸ▀ ╬ ὶ π

This equation can then be expanded into the quadratic form ὥὸ ὦὸὧ π for ὸȡ

▀ẗ▀ὸ ▀ẗ▫ ╬ὸ ▫ ╬ẗ▫ ╬ ὶ π

The quadratic formula can be used to calculate ◄ and thus the distance the ray has travelled

to intersect with the sphere (See Appendix E for details):

ὸ
ὦ Ѝὦ τὥὧ

ςὥ

3.1.6 Reflection Rays:

A secondary reflection ray described in section 2.2 can be calculated using the following

vector reflection equation:

╡ ς╝ẗ╛╝ ╛

Figure 15: Reflection Vector

Where ╡ is the reflected ray direction, ╛ is the inverse incoming light direction and ╝ is the

surface normal at the point of intersection.

Firstly the projection of ╛ in the direction of ╝ is performed via ς╝ẗ╛╝, the required

reflected vector is then determined by subtracting ╛.

3.1.7 Refraction Rays

Figure 16: Refraction Transmission

Secondary refraction rays can be cast upon intersection with transparent objects to simulate
materials such as glass and water. The following equation is used to calculate the direction
vector of the transmission ray based on the direction of the incident ray, a refractive index
and the surface normal:

╣ – ╝ẗ╘ ρ – ρ ╝ẗ╘ ╝ –╘

where ╣ is the transmission ray direction, ╝ the normal, ╘ the ray of incidence's negative

direction and – the refractive index of the material.

The refractive index with accordance to Snell's Law, determines the amount of light that is
refracted when entering a material and is defined as a ratio of the speed of light in a vacuum
to the speed inside the material.

Figure 17: A refraction scene from the prototype.

4 Geometric Modeling Techniques:

4.1 Polygonal Mesh

Ray tracing relies on calculating the intersection of rays with geometry to successfully render

a scene. Most commonly, a polygonal mesh can be used comprised of many vertices,

usually forming tessellated triangle faces. This technique is particular dominant throughout

pipeline-based rendering and the creative industries for a number of reasons:

Meshes allow flexible construction of specific shapes and models by artists, allowing direct

per-vertex manipulation during creation through the use of specially designed software

packages such as 'Maya' and 'ZBrush'. These software packages are particularly highly

used in the games and special effects industries (Ingram, 2010). Once constructed, the

resultant models vertices positions can be stored in a data structure and later loaded into a

program or game for rendering. Once loaded, shader techniques used in pipeline rendering

API's such as OpenGL and DirectX can then operate on each vertices and alter the model to

enhance the visual effect of the model further or create special effects such as distortion and

displacement. Additionally, meshes can be created from a variety of alternate means such

as laser and image scanning devices when absolute precision is needed. In general, the

larger the number of triangles comprising the mesh, the greater the realism.

Figure 18: Example mesh of a model (Li, 2013)

Figure 19: (Hock-Chua, 2012)

Another advantage is owed to highly developed hardware support offered by modern

graphics cards and pipeline API's, which are designed specifically to handle mesh rendering

(OpenGL.org, 2013) allowing efficient computation of models by breaking down complex

calculations into smaller simpler tasks based on the properties of polygonal faces (Li, 2013).

The importance of meshes in modern API is highlighted by the prominence of the vertex

'shader' in pipeline architecture, such as can be observed in Figure 19, featuring a basic

diagram of the OpenGL pipeline.

Although meshes are common to pipeline rendering, the same ray intersection principles

highlighted previously for simple algebraic geometry can also be applied to allow ray tracing

of mesh models. The method presented below looks at calculating the intersection with a

triangle, by treating it as a subset of a plane (Marschner, 2003).

There are two major steps to the process, firstly a ray intersection is calculated on the

triangleôs plane. It must then be determined if this lies inside the triangle bounds and

therefore intersects.

Figure 20: Triangle subset of a plane and intersecting rays

The initial intersection is calculated using the implicit equation of a plane as described in

section 3.1.4, but with the triangle vertices as the position on the plane and the normal

derived from the cross product of two triangle edges:

▪ ▬ ▬ ▬ ▬

Where ▬ ▬ and ▬ ▬ represent the edges of the triangle, and the order is such

that ▪ points towards the front side of the triangle, determined as the counter-clockwise

ordered vertices.

It must then be determined if the intersection point lies within the triangle. This can be

achieved by describing the triangle as the intersection of three lines along the edges, where

either side of each line is a half-space (inner and outer). If the intersection lies in the correct

half-space of all three lines then it must be inside the triangle.

Figure 21: Top - Triangle described as three half-spaces. Bottom - Calculating a point inside.

If ▬ is a vertex point of the triangle, vector ○ is a line along the edge such as ▬ ▬ , and ●

is the intersection point, it can be determined if ● lies inside by defining a vector ● ▬ and

calculating if this is counter-clockwise to ○, i.e. it is to the left of the edge.

This can be determined by taking the cross-product of the two vectors ○ and ● ▬ , and

then calculating its dot product with the normal as defined earlier. This is because we know

that if one vector is counter-clockwise to another as per the arrangement of the triangle

vertices, the cross-product will point to the front as proved by the normal calculation earlier.

Therefore if the cross-product of ○ and ● ▬ is facing the same way as the normal, we know

that ● ▬ must be counter-clockwise to ○. If the resultant dot products for each edge are

positive, then we know that ● lies inside the triangle. The above can be reduced into the

following formula:

▬ ▬ ● ▬ ẗ▪ π

▬ ▬ ● ▬ ẗ▪ π

▬ ▬ ● ▬ ẗ▪ π

4.2 Meshless Implicit Modeling

An alternate to polygonal mesh modeling particularly suited for ray tracing is offered via the

use of mathematical implicit functions to represent geometric objects. Implicit geometry

contrasts greatly with explicit methods such as meshes by not defining models through

precise vertex positioning, but instead by computing a function for each ray to determine if it

hits a surface based on its geometric properties.

4.2.1 Implicit Functions

A geometric object can be represented by the following implicit function:

Ὄ Ὂὼȟώȟᾀ

Where the function can represent a solid shape if Ὂὼȟώȟᾀ π or if Ὂὼȟώȟᾀ π and

alternatively a 'surface' if Ὂὼȟώȟᾀ π (See Figure 22).

Figure 22

An example is outlined in section 3.1.4 where such an implicit equation for a plane is
described: ▬ ╪ẗ▪ , which in its component form can be expressed more generally as
the implicit function:

╕●ȟ◐ȟ◑ ═● ║◐ ╒◑ ▀

where ═║╒ are the components of the normal and ▀ ╪ẗ▪.

4.2.2 Signed Distance Functions (SDF)

Implicit surfaces are particular useful because of their potential for use in procedural
geometry and their blending capabilities. However, rendering implicit surfaces in real-time
can be difficult due to the required incremental searching of surface positions. In answer,
techniques such as 'marching cubes' and 'ray marching' have become popular to optimise
the process by approximating surface points via the use of signed distance functions to
speed up rendering (Reiner, et al., 2011).

Implicit geometric surfaces can be approximated simply through the use of distance
functions by calculating the distance from a given point to a surface rather than attempting to
determine it exactly.

The following describes the mathematical definition of a signed distance function (Reiner, et
al., 2011):

If ɱ and ɱ are respectively the regions in and outside of an implicit surface and ɱ is the

set of points comprising the surface, the signed distance function ‰● can be defined as the
following:

‰●
άὭὲȿ● ●ȿ ÉÆ ●ɴ ɱ
π ÉÆ ●ɴ ɱ
άὭὲȿ● ●ȿ ÉÆ ●ɴ ɱ

returning the distance from ● to the closest surface point, being negative if inside, positive if
outside, or zero if at the surface. It is therefore a subset of implicit functions, described in
section 4.2.1.

4.2.3 Ray Marching with Distance Functions

Ray tracing though suitable for simple implicit surfaces, has difficulty with complex surfaces
as the computational requirements for calculating the exact surface position increases. Ray
marching, a technique proposed by Hart, et al., (1989) can be implemented into ray tracing
for use with implicit surface modeling by utilising SDF to speed rendering performance and
therefore allowing the rendering of complex implicit geometry without the use of meshes.

Ray marching works by firing rays into the scene as normal, however instead of calculating
an exact intersection point, iterative steps are taken along the ray until it enters a surface,
determined when the SDF returns negative. Once inside, the march is taken back to the last
positive position and the step size is decreased until a threshold value is reached. The initial
size of the step along the ray can be adjusted to suit performance or accuracy, where too
large a step can lead to missing geometry or inaccurate surface approximation and
conversely too small a step may impact performance by increasing the number of distance
function calculations.

4.2.3.1 Sphere Tracing

A solution to the step size problem is a technique known as 'sphere tracing' as demonstrated
in Figure 23. Sphere tracing works by instead of taking regular interval steps along a ray, it
attempts to take a shortcut by calculating the distance to the closest object using distance
fields and therefore the maximum distance it can travel along the ray before encountering a
surface. The 'unbounding' spheres as they are also known, are volumetric representations of
the space centred on a single sampling point along the ray at each step. The region inside
an unbounding sphere is guaranteed to be free of any surface allowing advancement to the
boundary of the sphere. This results in a large reduction of steps along each ray, but does
suffer an increased amount of bounding sphere checks as it nears a surface edge. This is
particularly evident with tightly packed geometry or when nearing object boundaries as
observed by Quilez (2008) in his 'Slisesix' rendering. Additionally, since sphere tracing
knows the distance to the closest surface, it effectively removes the need to check for
entering an object and retracing steps back unless absolute precision is required. Instead, a
low threshold value can be used to determine when the surface intersection is satisfied.

Figure 23: Fixed step and sphere traced ray marching comparison.

Figure 24: A ray march render from the prototype, coloured using the step distance into the scene

(lighter shades are nearer then darker shades).

4.2.4 Normal Calculation

Normal's are the perpendicular vector or line for a given position on a 3D surface or a 2D

curves tangent line. They are important for many aspects of 3D rendering including shading,

lighting and intersection (demonstrated in section 4.1).

Modeling techniques like mesh rendering can explicitly define the normal of each vertex

comprising the mesh. Ray marching with distance functions to form complex surfaces

however, requires dynamic computation of the normal for each surface point. This is

particular evident with certain implicit geometry such as 3D fractals that feature undefinable

surfaces.

4.2.4.1 Gradient Computation

One effective method to calculate the normal is through approximation by comparing a point

to its surroundings. This can be achieved using the gradient of a point on the surface (Hart,

et al., 1989):

ὔ Ὀ ‐ȟώȟᾀ Ὀ ‐ȟώȟᾀ
ὔ Ὀ ὼȟ‐ȟᾀ Ὀ ὼȟ‐ȟᾀ
ὔ Ὀ ὼȟώȟ‐ Ὀ ὼȟώȟ‐

where Ὀȟȟ in this case represents a distance function of the point on the surface, and ‐

determines the direction in which to sample.

Figure 25: A Mandelbulb Fractal ray marched using the prototype.

In Figure 25, a Mandelbulb fractal (implicit surface) has been rendered and shaded using the

gradient computation method to calculate the normals. Colour has been applied by scaling

RGB values with the components of the normal for each surface point.

4.2.5 Soft Shadows

As discussed in section 2.2, shadows are calculated in a simulated fashion to the real world,
where a line of sight is traced from the point of intersection to see if there is unobstructed
view to a light source. If obstructed, it is shadowed, else it is not.

The problem with this traditional ray tracing approach is that it creates 'hard' shadows due to
the binary decision of whether there is shadow or not. In the real world, light sources are not
a single point in size, so some positions on a surface will see more of the light source then
others, resulting in a 'penumbra' as demonstrated in Figure 26.

Figure 26: Soft shadows and the penumbra region.

The size of the penumbra region is associated with its distance to the obstructing surface
resulting in shadows appearing softer when further from the object and much sharper when
nearer. One point of note however is that due to the fact that only the outer half of the
penumbra can be calculated, the inner half cannot make it to the light source due to the
occluding surface, as observed in Figure 26. Therefore the inner penumbra region will
always be in shadow. Despite this shortcoming, the resultant penumbra shadows are far
more realistic than traditional hard shadows (See Figure 27).

As pointed out by Quilez (2010), soft shadows are computationally cheap to do in ray
marching because multiple points are already sampled by the stepping algorithm towards
the shade point along the ray. We can use this opportunity to test how close a ray comes to
hitting an object on its way to the shade point, applying a penumbra value to it based on its
distance, and then using the darkest value of all the penumbras (the minimum).

The penumbra value can represent the surface size of the light source, and by increasing its
size the shadows will appear softer and conversely decreasing its size will harden the
shadows.

Figure 27: Soft Shadows with, (left to right) - hard, soft, very soft penumbra values from the prototype.

A noticeable observation is that the hard shadows feature significant aliasing due to the hard
edged contrast as discussed in section 2.3. The penumbra effect on the soft shadows
removes the aliasing and results in anti-aliased edges at almost no extra computational cost.

4.2.6 Transformations

Hart (1994) describes that implicit surfaces can be transformed by first using an inverse

transformation of the surface positions domain and then computing the distance function

with the transformed point. The transformation can be represented as the following:

ὪὝ ● π

where Ὕ● is a transformation and Ὢ● defines the implicit surface.

It is pointed out that certain transformation can lead to the loss of distance information

because the transformation may result in a distance function no longer providing an accurate

value representing any object. In these cases, an extra adjustment of the domain must be

performed to compensate.

There are a number of transformation that can safely be performed without such a loss

called 'isometries', examples of which include translations, reflections and rotations. An

isometry is a transformation that preserves the distance value which Hart represents as:

Ὠ●ȟ╘ʐ Ὢ π Ὠ╘ ●ȟὪ π

where ╘ is an isometry transformation and Ὢ π an implicit surface.

Scaling represented as ╢● ί● on the other hand does not preserve the distance. Hart

shows that its inverse ╢ is ρȾί and therefore the accurate distance to a scaled surface can

be shows as:

Ὠ●ȟ╢Ὢ π ίὨ╢ ●ȟὪ π

Thus to scale an implicit surface, ╢ should first be applied to the domain, and then the

resultant distance be multiplied by the scale ί.

4.2.7 Combining Distance Fields

Distance fields can consist of one or more distance functions to construct complex scenes of
implicit geometry via ray marching. A powerful trait of distance functions is evident when
rather than defining implicit surfaces individually and computing the distance functions
separately; distance fields can instead be constructed and combined procedurally to allow
implicit surfaces to emerge (Quilez, 2008). This approach allows the deforming, twisting and
repetition of space by operating on the 3D surface position along the ray, also referred to as
the 'domain'.

Figure 28: Procedurally generated scene from Disney movie 'Brave' using procedural implicit rendering

techniques (Disney, 2012)

The 2012 Disney movie 'Brave' is a recent prominent example of the potential of procedural

geometry, described in an interview (Robertson, 2012) as "painting with code" by its

developer Quilez. He describes the need to use meshless procedural geometry in large

outdoor scenes in order for it to look more natural. An example of this is how the amount of

clover in the moss foliage was calculated by determining the normal of the surface, where

those facing sunlight would generate an increased amount.

4.2.7.1 Distance Operations

Distance fields as discussed can be used to construct detailed scenes consisting of complex

shapes from simple 'building block' primitives. Rather than operating on an entire model or

mathematically defined shape, manipulation of the domain space inhabited by an implicit

surface can produce many different effects.

Three of the most common 'domain operations' are now described and expressed

mathematically according to Hart (1994).

4.2.7.1.1 Union

Union is the staple domain operation required for ray marching. By comparing the relative
distance from the ray sample position with nearby implicit surfaces, it returns the closest or
'minimum' term. This operation has two useful applications. Firstly and most importantly it is
required to ensure the closest object is rendered to the image plane, effectively occluding
out of sight surfaces. Secondly, it can be used as shown in Figure 29 to effectively 'hard'
blend two objects together.

Figure 29: A union between a cube and a sphere in the prototype.

According to Hart, the union operation can be represented as the following:

Ὠ●ȟὃ ᷾ ὄ άὭὲὪ ●ȟὪ ●

where Ὢ, Ὢ are the signed distance functions of sets A and B, representing two implicit
surfaces.

4.2.7.1.2 Intersection

The intersection of two implicit surfaces can be achieved simply by returning the maximum
or greater distance from two distance fields, resulting in a new surface where both meet.

Figure 30: The intersection of a sphere and cube from the prototype.

Hart expresses intersection as follows:

Ὠ●ȟὃ᷊ὄ άὥὼὪ ●ȟὪ ●

4.2.7.1.3 Subtraction

The subtraction operation can be used in the opposite fashion to the union operation. By

inverting one of the distance fields and then calculating an intersection between the two.

Figure 31: A sphere is subtracted from a cube in the prototype.

Based on Harts intersection expression, the subtraction operation differs only in the negated

distance of one of the surfaces as shown in the following:

Ὠ●ȟὃ᷊ὄ άὥὼὪ ●ȟὪ ●

4.2.7.1.4 Blend ing

Quilez (2013) describes in code, the implementation of a smooth minimum function to

replace the basic union operation that results in discontinuities in the joined shape. The

smooth minimum function requires the same objective as union, to return the closest

surface, yet to do so without the discontinuities caused by a standard minimum function. The

blend shown in Figure 32 is carried out with approximate shape preservation, by applying an

exponential smoothing function to the two surface distance fields and using a constant

parameter that adjusts the overall range of the blend.

ίάὭὲ
ÌÏÇ ÅØÐὯὪ ● ÅØÐὯὪ ●

Ὧ

where ÌÏÇ is the natural logarithm, and Ὧ creates a decreasing function and controls

blending range. The two surfaces are combined (union) and blended exponentially with

diminishing influence as point ● becomes further away from the surface.

Figure 32: A blended torus and cube from the prototype.

