Procedural RPG World Generation


Having now completed my MSc, below is a brief summary of my dissertation project along with galleries and a video of the prototype. There’s also a download of the full report detailing the implementation process along with background on the topic for those interested in procedural content generation or studying something related.




Since the days of Rogue, and Elite, games have utilised various procedural content generation techniques to create game worlds for players to explore, freeing developers from the hand-crafted approach typically seen in the majority of games. For me, it was the second Elder Scrolls game, Daggerfall in ’96 that inspired me enough to prompt this topic choice for my MSc dissertation project. Although Daggerfall was most certainly a flawed game, the sheer size of the game world is still unsurpassed even today, being roughly 162 square kilometers (about half the size of the Great Britain) and featuring over 15,000 towns, villages and dungeons. An amusing rumor is that it’s so big that you can fit every other subsequent Elder Scrolls game world into a pixel on Daggerfall’s world map.

When you have a game world that big, procedural content generation (PCG) is the only feasible way to populate it. Daggerfall’s world was generated ‘offline’ and shipped on the game media, making the world the same every time you played it. It’s main story-line areas and characters were hand-crafted, but the rest of its towns, dungeons and wilderness areas were all generated.

Scale comparison of the Elder Scrolls games.

Scale comparison of the Elder Scrolls games.

What I wanted to do, is to tackle a project that aimed to generate an RPG world in real-time so each world would be unique, and ultimately create an explorable 3D RPG world generator. What I actually wanted to do was create a full RPG game to play within these generated worlds (i.e. my dream game), but clearly this would never have been feasible in the time-frame and so I settled for a compromise by removing any game mechanics or AI from the project, effectively stripping out the ‘game’ aspect. Even with this, the project workload was going to be ridiculous considering I wanted to use my own DirectX engine and use it to generate the world, complete with dungeons, NPC towns and a day/night cycle.

Unlike most of my previous projects, there wasn’t going to be much focus on graphics and that actually fit nicely with my retro vision for a more modern looking Daggerfall-esque game, complete with sprites…lots of sprite.

My report can be found at the top of this post if you’re curious about some of the techniques I used in the prototype. I had little knowledge of how other games have really approached this from a technical point of view, other that what I had uncovered during my research on the topic. The developed prototype is therefore very much my own approach.

Since, the detail is all in the above report, I’ll just briefly mention some of the techniques the prototype involved:

The world generation itself was created using a procedural noise technique to generate a height-map. Multiple octaves of value noise are combined (Fractional Brownian motion) to create a resulting fractal noise suitable for generating realistic terrain formations. The noise implementation I used was specifically Voronoise, a method that combines a value grid-based noise type and a ‘jittered’ grid version of Voronoi (cellular noise) into an single adjustable function. I introduced a seed value into the noise generation to allow for reproducibility of worlds, given the same seed. The height-map is output in the pixel shader to a render target upon generation, and then used during the tessellation shader stages via patch control-point displacement when rendering the world.


Summation of noise octaves.


A variety of generated worlds.

The prototype’s generated world size is not huge like Daggerfall, but it’s a fair size at around 16,777 square km. That’s a little under half the size of Skyrim’s world for example, but for a little prototype I’m happy with this and it still allows plenty of explorable terrain using the appropriate movement speed and not the super fast one as seen in my video!

Dungeons use a completely different generation method that I implemented off the top of my head after looking into various techniques. It’s an agent-based technique that uses diggers to burrow out corridors and rooms, with various rules thrown in to keep them in-check to ensure they generate sensible looking dungeons. They are also responsible for spawning the dungeons contents which include monsters and treasure chests and the up and down stairs. Here are some ASCII representations of the dungeon layouts generated by the method:


The world is divided up into 32×32 terrain chunks that are each responsible for hosting their respective game objects such as flora, fauna, towns and dungeon entrances. For performance purposes frustum culling was a necessity due to the large scale of the terrain, and only chunks visible in the frustum are processed. Each chunk has a chance of creating towns and/or dungeons and checks such as suitably flat terrain are important factors in determining this. Each building performs a suitability check on the terrain mesh at a chosen spot to see if its within the gradient threshold, and if so places a random structure. If enough buildings are present in a town, NPCs will spawn within proximity of the town.

I added a few small graphical enhancements to the game such as faked atmospheric scattering, fog, layered sky domes, water and emission mapped buildings at night. They are each detailed in the report, but ultimately time was limited and any graphical enhancements were really a secondary concern. Despite this, I really wanted to add them and I think it does enough to achieve the overall atmosphere that I had envisaged, as demonstrated in the below comparison with a Daggerfall screenshot:


Aesthetic comparison between Daggerfall (left) and prototype (right).

The prototype initially starts into the table view where a map of the generated world is shown that can be rotated and zoomed in/out for examination. At a key press the camera moves into the first-person mode and plonks the player into the world. Worlds can be generated in first-person mode but it’s much more intuitive to do it in the table view. By tweaking the various settings in the UI i.e. noise values, town frequency and tree density; worlds can be tailored to whatever style you want, although currently you have to understand each of the noise settings and their influence on the generation process, to create something you have in mind. Failing that though, there’s trial and error. Ultimately, I’ll add predefined terrain settings that can be selected to simplify this process since it’s really not intuitive to know how ‘lacunarity’, ‘gain’ or ‘frequency’ for instance will effect the world, but academically, it’s quite useful to have them directly tweak-able. A seed value can be directly entered into the UI, with every unique value resulting in a unique world.

I hope at some point to continue with the project. There will be a hiatus for the foreseeable future while I work on other things. There is near infinite scope for the project, with so many things to add so it’s likely something I can keep coming back to.

I also produced a nifty tool for visualising noise which could have various uses for demoing. I’ll probably get this uploaded with a download of the prototype itself at some point.

As detailed in the report, the prototype uses various art assets (models/textures) sourced online via Creative Commons license. The project is for non-commercial use and many art assets are effectively placeholders used to finish the prototype during my studies.



3D Pinball Game – Development Project



This is a 3D pinball game developed as part of my MSc Computer Science. The module was a group project and we were tasked with developing a 3D pinball without using an existing propriety game engine (such as Unity or Unreal etc.).

I developed an easy to use DX11 renderer for use by the group and we incorporated the Bullet physics and FMOD libraries to put the game together.

The time constraints on the project were intense and so this was put together in around 10 days (some crazy hours ensued). Many cans of energy drink and cups of coffee later this was the result. Its not exactly pinball FX but factoring in timeframe and tool constraints, I’m pleased with how it turned out. I wouldn’t expect a public release any time soon though!


Bullet physics is pretty fiddly to get up and running and took a bit of research to get to grips with. As with most open source libraries there are many conflicting sources of documentation and versions floating around which often serve only to confuse, but for a free physics library you can hardly complain.

I worked on quite a bit of the project, putting together the renderer and framework that the group used for production. I programmed the graphics, did any required artwork (base textures were sourced online) and worked a lot on the important physics such as the flippers and launch mechanism. With more time we could have improved quite a bit, as it stands the physics aren’t on a fixed time step and neither is it on an independent thread, therefore bad things happen if the frame rate gets low. For this reason it’s designed to run more or less perfectly on the system we developed it on and we were marked on, but it would need a fair bit of improvement to get it working nicely on any system and I doubt I’ll have time for that any time soon.

The project was probably my first real taste of game dev crunch or ‘death march’. Really it was worse, with 16+ hour days, often leaving the lab after sunrise. In the end, I think it was worth it though and I had actually always quite fancied trying my hand at developing a pinball game!

PS. Thanks to the guys (and gal) for such a hard-working group.

Cross-Platform Game Engine


In the first semester of my MSc Computer Science degree as part of the Games Development Architectures module we were tasked to design and implement a cross-platform game engine. A game would also be made using the engine.

The chosen platforms were a Windows PC and Windows Phone 8 device. I decided that considering Microsoft had developed a Universal Application framework for targeting both of these, I would utilise it. This was good from the point of view that it simplified the cross-platform compatibility, but introduced a few limitations (namely having to work with the Windows RT platform and resultant consequences for dealing with inputs via ‘ref classes’ etc.. Coming from experience with Win32 desktop programs, Windows RT feels very different to program for and much less flexible, but then again Win32 really does need some modernisation.


Project Details:

  • Engine coded in C++ (Visual Studio).
  • DirectX11 rendering engine component coded from scratch.
  • HLSL shaders.
  • The Universal App framework used to contain the code solution and deploy to both platforms.

We were given a design specification for a simple game called ‘Tunnel Terror’. It involved the player having to control a vehicle/object through a tunnel, avoiding various obstacles. The speed would gradually increase the longer the player survived and any collisions with obstacles would result in death. Score was determined by length of survival. I decided to add various extras including power ups such as coins and a randomised speed-up/slow-down. The game would need to play on both a PC and Windows Phone 8 device, allowing for the differing input controls to play. I decided the PC would utilise keyboard whereas the phone would rely on the accelerometer (tilt) sensor to manoeuvre the player through the tunnel. The PC also required a 2 player mode. Main menu, high score table and game over screens would be needed as well as Multiple camera modes such as first-person, third-person and death fly-by cameras.


Although marks were given for the game implementation and extra features, much of the module was graded based on the engine design, implementation and accompanying report. My report justified the design based on four principles of games architecture, namely ‘Simplicity’, ‘Reusability’, ‘Abstractness’ and ‘Modularity’. Below is an example of the UML design used for my engines platform independent rendering component, with examples given to how behaviour could be derived for both DirectX and OpenGL.


In the report we also had to research how we would have implemented the game on next-generation architecture such as the PlayStation 4 and how the engine would deal with the addition of different kinds of input devices.

There were some marks awarded for graphics quality and since the target platforms were both Microsoft, DirectX11 was used for the graphics. I implemented normal bump mapping to give it a nice look when flying down the tunnel. I also randomly changed the textures of each tunnel section and reset them to the end of the sequence once passing behind the frustum to give the impression of an endless tunnel with non-repeating sections.2

Annoyingly because the game is a Windows Store application there is no runnable executable so without actually publishing it to the Store and getting past all the certification requirements I cannot put it up anywhere to play! What is worse though is that currently I know of no screen capture software that can even record footage of the game running (at a decent FPS), both Fraps and Bandicam do not capture it since it’s not a desktop application. Bandicam does have desktop capture support but this also didn’t seem able to see the game and is not suitable for high frame-rate applications. So, as it stands I can’t make a video of the game running without hardware recording. Hopefully, this is something that won’t always be the case.

I was very pleased with the final engine and received a 92% grade for the module. I have since improved upon it and reused design elements for subsequent modules such as Real-time Graphics. I think a lot of what I coded for this project will be extremely useful going forward.




Bit’s Blitz – Puzzle Game

Bit's Blitz - Puzzle Game

Bit’s Blitz – Puzzle Game

In the third year of my Computer Science BSc (2013) as part of the Commercial Games Development module, we were placed into groups and tasked to produce a computer themed game designed for children. Each of the group members had to produce a game design document, one of which would be chosen for the group to develop. My group consisted of me, Aaron Ridge, Michael Killingbeck, Andrew Woodrow, Joshua Twigg and Alex Lynch.

The group decided to go with my game design which was inspired by the classic puzzle game Chip’s Challenge, with the idea being to reimagine it and modernise the graphics.

Game synopsis:
 “‘Bit’s Blitz’ is a fun 2D puzzle game following the escapades of its protagonist ‘Bit’. The game takes place across a series of levels increasing gradually in difficulty, gradually introducing new game-play elements. The player controls ‘Bit’ around a grid, constrained by a series of maze-like blocks and hazards. ‘Bit’ must successfully collect all the computer components that are scattered around the level and then repair his computer to proceed to the next level.”

Developed using C# and the XNA framework for the PC platform (Windows XP+).


The nice thing about this game design was that we could focus on the puzzle aspect of the game, time and imagination permitting, due to the simple overhead on technical implementation. The tile-based game engine was written from scratch using XNA, utilising XML data structures to store level data and a custom made loader. A cool and free little program called Tiled was used to ‘paint’ the level layout and export it into our XML format. I’d strongly recommend this to any considering 2D tile-based games for constructing levels, having said that, it’s a nice programming exercise to develop your own editor if you get the chance.

All gameplay aspects including animations and particle systems were programmed for the game, using no other libraries except XNA. I designed the game framework based on the State Design Pattern which worked out really well and continue to use it for game development.

With the use of XML and Tiled it allowed us to churn out level designs at an alarming rate and the final product has over 20 levels! Not bad considering the 2 week development time. When giving the presentation of the game, we literally only had time to demonstrate about 5 of the best levels, odd considering level variety tends to be in short supply for prototypes.

Sound effects were added (free assets) however I’ve removed these from the video and added music since honestly, they weren’t brilliant! The above gameplay video demonstrates various levels (played by me). I could barely remember most of the levels so it’s pretty much a blind play-through with some genuine mistakes.

For the project we all chipped in and the group worked well together. The game was never released or published anywhere, though if anyone is interested I could stick the executable on here for download.

OpenGL Cross-platform PC/PSP Game Coursework

Last semester as part of the Advanced Graphics module of my CS degree at Hull University, we were tasked with a group project to produce a cross-platform OpenGL mini-game for the PC and Sony PSP based on a specification. The game premise was to move around a 3D ‘maze’ consisting of four rooms and connecting corridors, avoiding a patrolling AI that would shoot you if within its line of sight. The objective was to collect 3 keys to activate a portal to escape and beat the game.

The groups were selected at complete random with 4 members. As per usual, group coursework assignments are particularly difficult due to the extra concerns of motivating members and assigning work and by year 3 of University, you get a good idea on the best way of operating within them to secure good grades. I went in with the mindset of doing as much work as possible after we assigned tasks. Hopefully each would carry out their allocated work, if not, I’d just go ahead and do it, no fuss. Luckily one chap in my group was a friend and he did an excellent job coding the AI, mini-map and sound while I worked on coding the geometry, camera, lighting and player functionality etc.


Mini-maze model

Static environment lighting

Static environment lighting

Cross-Platform Limitations:

Having worked with OpenGL and shaders last year for my 3D ‘The Column‘ project, it was some-what limiting when I realised that the PSP didn’t support them and that fragment-based lighting was a no go. With one requirement of the game being a torchlight effect that illuminated the geometry, this would therefore mean that for PSP compatibility, vertex-based lighting would need to be implemented and that meant tessellation of primitives to prevent the lighting looking very blocky and…well very 90’s. Luckily the PSP did atleast have support for VBO (Vertex Buffer Objects) which meant effectively each tessellated model could loaded onto the graphics card only once to improve performance.

Unified Code

An interesting aspect of this project was the required consideration for a consolidated code-base that where possible allowed shared functionality for both the PC and PSP platforms i.e limiting how much platform specific code was used. This was essential since the game would be a single C++ Solution for both platforms.

I designed the code structure based around principles Darren McKie (the course lecturer) described, and produced the following class diagram that reflects the final structure:

Unified Cross-platform Class Diagram

Unified Cross-platform Class Diagram

The majority of game code resides in ‘Common Code’ classes that are instantiated by each particular platform ‘Game’ object. Certain code such as API rendering calls were kept platform specific but made use of the common classes where necessary. A particular nice way of ensuring the correct platform specific object was instantiated was carried out using ‘#Ifdef’, ‘#ifndef’ preprocessor statements and handled by a ‘ResourceManager’ class.

As mentioned earlier, per-vertex lighting had to be implemented due to PSP compatibility. A primitive with a low number of vertices would thus result in very blocky lighting. To prevent this I created a tessellation function that subdivided each primitives vertices into many more triangles. I played around with the tessellation depth to find how many iterations of subdivision could be achieved before inducing lag and was very happy with the lighting result considering there is no fragment shader; a given for today’s modern pipelined-based rendering.

Active Portal

Active Portal

The PSP implementation proved more tricky due to getting to grips with the PSP SDK and having access to very little documentation, however the game was successfully implemented onto a PSP device and ran with decent performance after compressing the textures down and removing geometry tessellation to allow for the PSP’s limited memory capacity.

The game was written in C++ and  the following libraries and software were used:

  • GXBase OpenGL API
  • Sony PSP SDK
  • OpenAL
  • Visual Studio 2012
  • Paint .Net